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Abstract

Concept learning is a problem that has been well-studied
through the lens of Bayesian frameworks. However, these
frameworks fail to model human cognition when presented
with observations from novel concepts. We propose a new
model for concept learning based on self-attention networks,
removing explicit Bayesian constraints to provide a model
even when the observation has zero likelihood. We provide
theoretical foundations showing that neural models can exhibit
Bayesian-like behavior and demonstrate it in practice. We also
evaluate our model on human datasets, finding that these mod-
els do not yet exhibit out-of-sample generalization and explain-
ability.
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Introduction
Human cognition is a field that has been widely studied
through the lens of Bayesian models. One problem used
to test theories of cognition is concept learning. Bayesian
frameworks for concept learning have been found to perform
very well at modelling human behavior (Tenenbaum, 1999).

However, these models can lack the ability to handle in-
stances where the prior probability or observation likelihood
are zero. While humans can react online to observations from
novel concepts, these examples cause the posterior distribu-
tion to be undefined, rendering Bayesian inference impossi-
ble. In this work, we study an alternative method for concept
learning that does not impose a Bayesian framework.

In particular, we explore a novel model of concept learn-
ing based on self-attention neural networks (Vaswani et al.,
2017). We draw from the intuition that self-attention can
learn pairwise correspondence between elements, and sug-
gest encoding concepts in latent representations. We find that
such a model behaves similarly to a Bayesian model, although
its predictions given zero-likelihood observations are often
uninterpretable. Our specific contributions are:

• A new method for concept learning based on self-attention
neural networks.

• An evaluation of the model’s performance relative to estab-
lished Bayesian models.

• A study of the model’s interpretations of human behavior,
especially in cases where Bayesian models fail.

All source code for this work is available open-source at
https://github.com/j-mao/neural-concept-learning.

Problem statement
We first formalize the problem of concept learning as it is
used in our study.

Within some universe U, we define a concept to an ab-
stract rule, specifying a set C ⊆ U of elements that satisfy it.
Some examples of concepts could include “even numbers” or
“numbers between 11 and 20” in a universe of positive inte-
gers. The concept learning task is to, given a subset of ran-
domly sampled elements D ⊆C (the “observation”), estimate
the membership of elements in the concept C itself.

Tenenbaum (1999) studies this problem using a Bayesian
framework. Specifically, they propose to estimate the poste-
rior probability according to Bayes’ theorem:

Pr [C | D] ∝ Pr [D |C]Pr [C] (1)
Pr [x ∈C | D] = ∑Ci:x∈Ci Pr [Ci | D] (2)

Notably, the constant of proportionality in Eq. (1) is Pr [D]−1,
which can be undefined if D is not consistent with any con-
cept in the concept space. In these situations, the likelihood
of D is zero under all known concepts. While humans may
still produce some estimate for the posterior, this Bayesian
model is unable to model human cognition in any capacity.

In our work, we propose an alternative model for the
concept learning problem, based on self-attention net-
works (Vaswani et al., 2017). This model does not impose a
Bayesian structure and therefore does not encounter the same
issue. Therefore, we aim to answer the following questions:

• How accurate is a neural model of concept learning at mod-
elling human behavior? How is model capacity and accu-
racy affected by the latent dimension?

• Can a neural model of concept learning exhibit emergent
Bayesian behavior?

• What interpretations can a neural model assign to human
responses on the concept learning problem, including on
observations from novel concepts outside the known con-
cept space?

Method
In this section we reintroduce the Number game as a task for
concept learning, and describe our neural architecture for our
modelling framework.



Table 1: The space of concepts used in our work. Each con-
cept had a predetermined size for the observation set gener-
ated from it.

Concept rule Size |C| Observation |D|
Multiples of 2 15 4
Multiples of 3 10 4
Multiples of 4 7 3
Multiples of 5 6 3
Between 1 and 10 10 4
Between 11 and 20 10 4
Between 21 and 30 10 4
Nonsense N/A 3

Task: Number game
Tenenbaum (1999) uses the Number game as a task for eval-
uating models of concept learning. We also use this task for
our work.

In the Number game, the universe is the set of positive
integers between 1 and N, and concepts are a restricted set
of mathematical properties of these integers. In the original
work, N = 100; however, here we set N = 30 to reduce the
size of a representative human dataset. Table 1 lists the spe-
cific concepts used in our experiment.

Human data collection
A human dataset was collected by asking volunteers to solve
the number game. A collection of 27 observation sets Di was
generated and divided evenly into 3 “rooms” as shown in Ta-
ble 2. Each participant was presented with a room and asked
to provide a set of numbers C̃i for each observation, repre-
senting their best guess for the underlying concept.

Of the 9 observations in each room, 2 were “nonsense” ob-
servations composed entirely of random numbers, thus falling
outside the concept space. Experiment participants were
oblivious to the existence of these nonsense concepts. The
question order was randomly shuffled to ensure these obser-
vations were interspersed.

Participants were invited to solve multiple rooms if they
wished. The division of rooms is superfluous and only present
as a load-balancing mechanism; each room received a similar
distribution of concepts.

In order to establish the participants’ priors, they were
asked to read a cover story before being presented with the
observations. The cover story is included in the Appendix.

Neural network architecture
We model the task with a simple self-attention network f
equipped with an n-dimensional latent space. We represent
each integer x by a “query” vector qx ∈ Rn and key vector
kx ∈ Rn. For each set of numbers D ⊆ U from a concept C,
the model predicts relative probabilities as follows.

f (x | D; q,k) ∝ exp

(
∑
z∈D

⟨qx,kz⟩

)
(3)

Table 2: The observations presented to participants, anno-
tated with the room it appeared in and the ground truth con-
cept it was drawn from.

Room Observation D Ground-truth concept

A 12, 18, 26, 28 Multiples of 2
A 4, 10, 20, 28 Multiples of 2
B 2, 14, 16, 30 Multiples of 2
C 6, 8, 22, 24 Multiples of 2
A 6, 9, 21, 27 Multiples of 3
B 3, 9, 15, 21 Multiples of 3
C 12, 15, 18, 24 Multiples of 3
A 4, 12, 16 Multiples of 4
B 8, 24, 28 Multiples of 4
C 4, 8, 20 Multiples of 4
B 10, 20, 25 Multiples of 5
C 5, 15, 30 Multiples of 5
A 4, 5, 6, 9 Between 1 and 10
A 1, 2, 3, 7 Between 1 and 10
C 1, 5, 6, 8 Between 1 and 10
A 11, 14, 16, 19 Between 11 and 20
B 12, 15, 19, 20 Between 11 and 20
B 11, 13, 17, 18 Between 11 and 20
B 22, 25, 27, 29 Between 21 and 30
C 21, 23, 28, 30 Between 21 and 30
C 22, 24, 26, 29 Between 21 and 30
A 6, 9, 19 Nonsense
A 3, 14, 23 Nonsense
B 1, 5, 13 Nonsense
B 6, 11, 27 Nonsense
C 3, 7, 15 Nonsense
C 11, 24, 25 Nonsense

Eq. (3) is implemented using softmax attention. We do not
estimate the probability Pr [x ∈C | D] itself, but we estimate
that it is proportional to the output f (x | D). Note that f (· |D)
is not a probability distribution over U.

We learn these embeddings via gradient-based optimiza-
tion using a negative log-likelihood objective on the sets C̃i,
omitting data from nonsense observations.

J(q,k) = Ei

[
∑

x∈C̃i

− ln f (x | Di; q,k)

]
(4)

We emphasize that Eq. (4) trains only on positive examples
x ∈ C̃i. Regardless, training with this objective function natu-
rally decreases the estimated probabilities for U \ C̃i relative
to these positive examples.

We additionally train a reference network using a collec-
tion of 1024 observations drawn directly from the concepts.
The objective function for this network uses the ground truth
C̃i =Ci.

We compare these two networks with established Bayesian
frameworks and test their emergent properties on our datasets.



(a) Learning curve for attention models.

(b) Correlation with Bayesian model for
D = {12} (c) Predictions for D = {12} (d) Predictions for D = {12,16}

Figure 1: Comparison of attention models with varying latent dimensions, alongside a baseline Bayesian model with uniform
priors over the categories. Elements of D are shown in red. Predictions are relative to the maximum f (· | D) in each trial.

Results
In this section we present the results of our experiments. We
train each network with Adam (Kingma & Ba, 2015) over
10240 passes through their respective datasets.

We additionally compare our networks with a baseline
Bayesian model equipped with the following likelihood func-
tion suggested by Tenenbaum (1999).

Pr [D |C] = |C|−|D| (5)

We use Eq. (5) in the framework defined in Eqs. (1) and (2),
with a uniform prior over the two categories of concepts
(“multiples” and “intervals”), distributed uniformly within
each category.

Model capacity and emergent behavior
We first study the properties of our neural model when trained
on the ground-truth objective. We train models with n = 1, 2,
3, 5, 7, or 10 latent dimensions in order to understand model
capacity.

Fig. 1a shows that with enough training time, the networks
with a larger latent dimension achieve a lower loss J. After
approximately 3000 epochs, the widest network with n = 10
achieves a loss lower than all the other networks.

More interestingly, Figs. 1c and 1d examine the actual ef-
fect of reducing the latent dimensionality on the model’s in-
ferences. With just one latent dimension, there is enough rep-
resentation power for only one feature; we see that the model
has learned to categorize the universe into three sets, corre-
sponding to the three interval concepts.

The model appears to learn a second feature when a second
latent dimension is added. When n = 2, the inferred probabil-

ities appear to gain an “alternating” pattern between low and
high values, representing each number’s parity. This corre-
sponds with the “multiple of 2” concept.

We note that the nature of Eq. (3) means that the neural
model never infers a zero probability, even when the concept
space makes certain elements impossible. However, we ar-
gue that it is this exact property which allows it to robustly
handle novel situations where the observation is impossible
under the concept space. Nevertheless, the model does learn
to minimize these values as it predicts near-zero values.

Indeed, we qualitatively see that once there are at least 5
dimensions, the neural model’s inferences begin to correlate
very strongly with the Bayesian model. Fig. 1b illustrates a
generally increasing trend in the correlation coefficient as n
increases, reaching over 0.80. Moreover, comparing between
Figs. 1c and 1d we see the inferred probabilities change plau-
sibly as a new element is added to the observation D.

In fact, we argue that the structure of Eq. (5) enables this
behavior by design. We elaborate on this further in the Dis-
cussion section.

Human dataset
In this section we pivot to studying the neural model trained
on human-collected data. A total of 132 responses were col-
lected, distributed as 51 from Room A, 40 from Room B and
41 from Room C. Collectively they yielded 924 predictions
C̃i for “sensible” observations (ie., those with ground-truth
concepts), and a further 264 predictions for nonsense obser-
vations.

Fig. 2 shows an example of the model’s inferences when it
is trained on the sensible observations. The model’s perfor-



Figure 2: Predictions for D = {12} when trained on human
data.

mance is significantly degraded compared to the one trained
from ground truth data: understandably so, as human data is
generally noisy. It appears that the model with latent dimen-
sion 7 is close to mimicking the Bayesian model; however,
this behavior is not robust.

In fact, sometimes the model even predicts extremely low
probabilities for elements that belonged to the observation D.
This was seen when the latent dimension was 3.

Due to the poor quality of this model, we perform no fur-
ther analysis on it.

Model interpretations
In this section we inspect our model in order to interpret the
reasons both for model inferences and for human inferences.
We do so by examining any relationships between human pre-
dictions and the learned parameters of the model trained with
the ground-truth objective.

We begin by studying those parameters in isolation. Fig. 3
visualizes these parameters for the model with n = 5, which
had achieved the highest correlation with the Bayesian model.

There are some concepts that appear to be very clearly
present in the embedding. For example, dimension 5 con-
sists of generally positive values for numbers in [1,10] and
[21,30], and negative values for numbers in [11,20]. This
very clearly encodes the interval concepts.

Beyond this, it is difficult to immediately find an obvious
interpretation in terms of the concepts at first glance. Fur-
ther inspection reveals that each dimension may in fact be a
blend of several concepts. For instance, dimension 4 has very
high query values for numbers in the “multiples of 5” con-
cept, while also appearing to use negative numbers for the
interval concepts. Several key embeddings appear to be en-

(a) Query embeddings q (b) Key embeddings k

Figure 3: Learned embedding vectors using the ground-truth
training objective when n = 5.

coding parity for numbers up to 10, but diverge to encoding
other information for larger numbers.

As such, viewing the parameters gives us some limited
amount of insight into model explainability.

Finally, we test our model’s predictive power on a nonsense
observation shown in Fig. 4. The observation D = {1,5,13}
is consistent with a hypothetical concept “odd numbers”, but
is nonsense to the model as this concept is not part of the orig-
inal concept space. As previously discussed, the Bayesian
framework fails to produce any prediction for this nonsense
observation.

On the other hand, our neural model does produce an out-
put for this case; unfortunately, it does not appear to be very
interpretable. Despite “odd numbers” being the complement
of the seen concept “multiples of 2”, the predictions from
the model did not exhibit any obvious meaning. It appears
that the neural model has poor out-of-sample generalization
to these out-of-sample nonsense observations.

Indeed, Table 3 shows model underperformance on the

Table 3: Evaluation loss on the human dataset for model
trained on ground-truth objective.

Human dataset type

Latent dimension Sensible Nonsense

n = 1 3.564 3.643
n = 2 3.687 4.270
n = 3 3.671 4.767
n = 5 3.550 4.688
n = 7 3.662 5.088

n = 10 3.771 5.725



Figure 4: Model inferences for a nonsense observation with
D = {1,5,13}.

nonsense dataset. We also see symptoms of overfitting as loss
increases with latent dimension. These may all contribute to
challenges in achieving generalization.

Discussion
Our empirical results suggest that the neural model is able
to mimic some of the behaviors of a Bayesian agent. In this
section, we argue that this is possible due to the architecture
of the model itself.

We begin focusing our attention on the following toy sce-
nario: consider a space of two concepts C1 ⊂ C2 ⊆ U with
equal priors, with an observation D ⊆ C1. Let x ∈ C1 and
y ∈C2 \C1. We can compute under the Bayesian framework:

Pr [x ∈C | D]

Pr [y ∈C | D]
=

Pr [D |C1]+Pr [D |C2]

Pr [D |C2]

=
|C1|−|D|+ |C2|−|D|

|C2|−|D|

= 1+
(
|C2|
|C1|

)|D|
(6)

On the other hand, suppose the neural model f has n = 2 and
learns embeddings qz,kz ∈ R2 such that for some constant
c > 1, (qz)i = (kz)i = Jz ∈ CiK

√
lnc, where J·K denotes the

Iverson bracket. Then,

f (x | D)

f (y | D)
= exp

(
∑
z∈D

⟨qx,kz⟩−⟨qy,kz⟩

)
= exp(|D| lnc)

= c|D| (7)

Examining Eqs. (6) and (7) shows that for the appropriate
value of c, the neural model behaves just like the Bayesian
model as |D| → ∞.

As such, the design of the network architecture enables
some Bayesian-like behavior.

We remark that this exact analysis may not generalize to
more complex scenarios. The lack of an enforced Bayesian
structure also limits the model’s capabilities. For example,
when x ̸∈ C2 it will not infer a zero probability like the
Bayesian model, and the above analysis does not produce the
same result. Moreover, even when x ∈ D ⊆ C is part of the
observation, the model does not always predict high values
for Pr [x ∈C | D].

Despite these limitations, we empirically see that our
model nevertheless learns to behave in a seemingly Bayesian
manner. A fruitful line of further work may be in improv-
ing model interpretability, in order to better understand why
the model is successful in certain cases, as well as its failure
modes. We suggest exploring constraints that may discour-
age embedding dimensions from blending concepts, as well
as methods for analyzing embeddings that may extract the
concepts as “principle components”.

We note that additional insight may be gained from further
inspection of the network’s learned parameters. The exponent
in Eq. (3) can be rephrased as the inner product with a sum of
key vectors:

∑
z∈D

⟨qx,kz⟩=

〈
qx, ∑

z∈D
kz

〉
(8)

As such, it may be fruitful to examine summed key vectors
for observation sets, alongside query vectors for elements in
the human response sets.

Conclusion
We propose a model for concept learning based on self-
attention networks as a means of handling exceptional cases
where observations do not fit in any known concept. We
demonstrate that these neural models can produce predictions
for probabilities of concept membership even when Bayesian
models fail under zero-likelihood scenarios. We further show
that the neural architecture admits Bayesian behavior in lim-
iting cases, and that this behavior can even be observed on
regular datasets.

We remark that these neural models suffer from generaliza-
tion challenges and may exhibit poor interpretability on these
out-of-sample zero-likelihood inputs. However, our analy-
sis shows that model parameters may alleviate interpretabil-
ity issues: we highlight that it may be possible to recover
concepts from these latent representations, and recommend
further study of these parameters to bring additional insight
to interpretability.
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Appendix: Cover story
Included below is the cover story used to establish the priors
of experiment participants. The story was intended to encour-
age participants to think mathematically, but also to prefer
simpler rules due to the mechanical nature of the machines.

You are an archeologist, and you have just discovered
3 rooms of relics from an ancient civilization. The civi-
lization was profoundly knowledgeable, and knew about
many properties of mathematics. They were also expert
mechanical engineers, and have created many great ma-
chines.

One type of machine is a number “classifier”; these ma-
chines take a number as input, and determine whether
that number follows a secret rule. Each machine could
have a different secret rule, and the machines are inde-
pendent.

Each of the 3 rooms contains 9 of these machines; each
machine has a single dial you can turn, to select an input
integer between 1 and 30. After playing with the ma-
chines, you’ve already found some numbers that each
machine “accepts” as part of its secret rule. Can you
guess some other numbers that also follow each ma-
chine’s secret rule?


